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• Let us recapitulate the known rigorous results for D = 4 theories
derived from axiomatic field theory.
The Froissart bound

σt ≤
4π

t0
ln2 s

s0

t0 is a parameter derived from first principle (t0 = 4m2
π) for most

hadronic processes. s0 is energy scale to make argument of log
dimensionless and cannot be determined from axiomatic field
theoretic frame work. The bound is arrived at from the following
ingredients which can be derived from axiomatic field theory.

• 1. Analyticity of scattering amplitude, F (s, t), in the cut s-plane.
|F (s, t)| ≤ sN ,N ∈ Z , it is polynomially bounded (EGM) and it
satisfies dispersion relation for t inside Lehmann-Martin ellipse.
2. Crossing symmetry.
3. Convergence of partial wave amplitude inside Lehmann-Martin
ellipse.
4. Unitarity. The partial wave amplitudes satisfy positivity condition
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•
0 ≤ |fl(s)|2 ≤ Im fl(s) ≤ 1

The statements (1) - (4) have been proved in the frameworks of
axiomatic field theories.

• In order to derive statements (1) to (4) above one adopts following
steps in the frameworks of general field theories, say LSZ.
• The scattering amplitude, F (s, t), is the boundary value of an

analytic function such that

F (s, t) = limε→0F (s + iε, t)

with a right hand cut starting from the threshold, sthr , (say 4m2) and
a left hand cut starting from u = uthr . Partial wave expansion:

F (s, t) =
k√
s

∞∑
l=0

(2l + 1)fl(s)Pl(cosθ)

Pl(cosθ) converges for −1 ≤ cosθ ≤ +1; t = −2k2(1− cosθ) and
θ =c.m scattering angle. However, if we intend to study analyticity
property of F (s, t) in s for fixed t; there is a problem: as s → sthr ,
cosθ goes out of allowed region.
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• The resolution: Lehmann proved that the absorptive part of the
scattering amplitude has a bigger domain of convergence in the cosθ
plane - the Lehmann ellipse. Then a fixed t dispersion relation can be
written for t ∈ LE . More: there is a domain in t-plane with |t| < R̄,
R̄ is s-independent (Martin) such that partial wave expansion
converges in an ellipse whose focii are at ±1 and the semimajor axis
is 1 + t0

2k2 , k is c.m. momentum. This leads to proof of Froissart
bound as we know today (Martin). .
This result has been proved in field theory quite rigorously.

• There is a lot of interest in theories which live in D > 4. However,
the extra spatial dimensions must be compactified to get effective
4-dimensional theories for describe experimental data available now.
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Khuri’s Results

• Khuri [Ann. Phys. 242, 471(1995)] studied scattering in a quantum
mechanical model where a spatial dimension is compactified on a
circle, S1, of radius R; 1

R << 1. He derived expression for the
scattering amplitude in the frame work of perturbation theory. I shall
outline his approach and then state his conclusion.
The spatial geometry is R3 ⊗ S1. The potential is V (r ,Φ). r ∈ R3,
r = |r| and Φ has period 2π. V (r ,Φ) is such that as
r →∞ V (r ,Φ)→ 0. In the perturbative frame work he shows that
forward scattering amplitude violates analyticity properties for a class
of potentials in certain situations. However, a model without S1

compactification, with same potential (in d = 3) has good analyticity
properties known from 1957.
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• The scattering amplitude depends on three variables - the momentum
of the particle, k , the scattering angle θ, and an integer n which
appears due to the periodicity of the Φ-coordinate. Thus forward
scattering amplitude is denoted by Tnn(K ), where K 2 = k2 + n2

R2 .
The starting point is the Schrödinger equation[

∇2 +
1

R2

∂2

∂Φ2
+ K 2 − V (r ,Φ)

]
Ψ(r,Φ) = 0

The free plane wave solutions are

Ψ0(x,Φ) =
1

(2π)2
e ik.xe inΦ

and n ∈ Z. The total energy is

K2 = k2 +
n2

R2
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• The free Green’s function in this case has the following form

G0(K; x,Φ : x′,Φ′) = − 1

(2π)4

n=+∞∑
n=−∞

∫
d3p

e ip.(x−x′)e in(Φ−Φ′)

[p2 + n2

R2 −K2 − iε]

It satisfies the free Schrödinger equation

G0(K; x− x′; Φ− Φ′) = − 1

(8π2)

n=+∞∑
n=−∞

e i
√

K2−(n2/R2)|x−x′|

|x− x′|
e in(Φ−Φ′)

Khuri’s prescription:
√

K 2 − n2/R2 is defined in such a way that
when n2/R2 > K 2

i
√

K 2 − n2/R2 → −
√

n2/R2 − K 2, n2 > K 2R2

Expansion for G0(K; x− x′; Φ− Φ′) is damped for large enough |n|.
The Green’s function, G0, satisfies the properties satisfied by those in
usual potential scattering for fixed k2.
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• The scattering integral equation:

Ψk,n(x,Φ) = e ik.xe inΦ +

∫ 2π

0
dΦ′

∫
d3x′G0(K; |x− x′|; |Φ− Φ′|)×

V (x′,Φ′)Ψk,n(x′,Φ′)

Then we extract the expression for scattering amplitude from large |x|
limit and look at the asymptotic behavior of the wave function,

Ψk,n → e ik.xe inΦ +

+[KR]∑
m=−[KR]

T (k′,m : k, n)
e ik
′
mn|x|

|x|
e imΦ

[KR]: the largest integer less than KR with

k ′mn =

√
k2 +

n2

R2
− m2

R2
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• Therefore, K 2 = k2 + (n2/R2) = k ′2 + (m2/R2).
Remark: The scattered wave has only (2[KR] + 1) components and
those states with m2/R2 > k2 + (n2/R2) are exponentially damped
for large |x| and consequently these do not appear in the scattered
wave. Now we can extract the scattering amplitude to be

•

T (k′, n′; k, n) = − 1

8π2

∫
d3x′

∫ 2π

0
dΦ′e−ik

′.x′e−in
′Φ′ ×

V (x′,Φ′)Ψk,n(x′,Φ′)

with the constraint k ′2 + n′2/R2 = k2 + n2/R2 The reaction is
incoming wave |k, n > is scattered to final state |k′, n′ >. We shall
see how it looks in QFT.
• Formally, in terms of the full Green’s function

T (k′, n′; k, n)− TB = − 1

8π2

∫
....

∫
d3xd3x′dΦdΦ′e−i(k′.x′+n′Φ′)

V (x′,Φ′)G (K; x′, x; Φ′,Φ)V (x,Φ)e i(k.x+nΦ)

TB is the Born term.
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• The full Green’s function satisfies equation[
∇2 +

1

R2

∂2

∂Φ2
+ K 2 − V (x,Φ)

]
G (K; x, x′,Φ,Φ′) = δ3(x− x′)

δ(Φ− Φ′)

Khuri’s conclusion:explicitly computed the second born term T (2) for
the forward amplitude, for the choice n = 1. With counter examples
he showed that the analyticity of this forward amplitude is violated
when he chose Yukawa-type potentials of the form

V (r ,Φ) = u0(r) + 2
N∑

m=1

um(r)cos(mΦ)

where um(r) = λm
e−µr

r .
Key Steps: (i) Khuri checked analyticity property of the Green’s
function and they are analytic. (ii) He studied analyticity of scattering
amplitude and found that for n = 1, T (k, n; k, n), the forward
scattering is nonanalytic at the second order. It does not satisfy
dispersion relations.
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• IMPORTANT POINT: Khuri had studied analyticity property of
scattering amplitude for similar Yukawa potentials with no compact
spatial dimensions [Phys. Rev. 107, 1148(1957)] also see D. Wang,
Phys. Rev. 107, 350(1957). There was no problem and in fact, they
had proved dispersion relation.
His Remark: If analyticity breaks down ( his study is only in potential
scattering) and the compactification scale is LARGE can be explored
at LHC. Then it will have serious implications for the physics at LHC.

• Question: What is the situation in Relativistic Quantum Field
Theory with a Compact Spatial Dimension?
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Analyticity Property of Forward Amplitude in a
Compactified Field Theory

• How do we proceed?

• Consider a D = 5 massive, neutral, scalar field theory in flat space.

• Compactify one spatial dimension on S1. The geometry is R3,1 ⊗ S1.
Now the spectrum is a massive scalar field of the original theory and
tower of KK states.
Goal: To derive results without appealing to any specific model.

• Assumptions: After KK compactification, there will be tower of
states. All particles are stable, there are no bound states, the vacuum
is unique for compactified theory

• We work in the LSZ formulation. The postulates are:
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• A1. The states of the system are represented in a Hilbert space, Ĥ.
All the physical observables are self-adjoint operators in the Hilbert
space, Ĥ.
A2. The theory is invariant under inhomogeneous Lorentz
transformations.
A3. The energy-momentum of the states are defined. It follows from
the requirements of Lorentz invariance that we can construct a
representation of the orthochronous Lorentz group. The
representation corresponds to unitary operators, Û(â, Λ̂), and the
theory is invariant under these transformations. Thus there are
hermitian operators corresponding to spacetime translations, denoted
as P̂µ̂, with µ̂ = 0, 1, 2, 3, 4. [P̂µ̂, P̂ν̂ ] = 0 If translation operators are
chosen to be diagonal we have basis vectors span the Hilbert space

P̂µ̂|p̂, α̂ >= p̂µ̂|p̂, α̂ >

Then one has Lorentz invariant vacuum. Another important postulate
is microcausality.

14 / 35



• A4.. The microcausality: for two bosonic local operators
O(x) and O(x ′)[

O(x̂),O(x̂ ′)

]
= 0, for (x̂ − x̂ ′)2 < 0

• The asymptotic fields: define φ̂(x̂)in,out which satisfy free field
equations. We may construct complete set of states from φ̂in or φ̂out .
φ̂(x̂) is the interacting field; φ̂(x̂)in,out are defined with suitable
limiting procedure from φ̂(x̂). The vacuum is unique. Single particle
states created by φ̂(x̂)in and φ̂(x̂)out are the same.
• R-products

R φ̂(x̂)φ̂1(x̂1)...φ̂n(x̂n) = (−1)n
∑
P

θ(x̂0 − x̂10)...θ(x̂n−10 − x̂n0)

[[...[φ̂(x̂), φ̂i1(x̂i1)], φ̂i2(x̂i2)]..], φ̂in(x̂in)]

R φ̂(x̂) = φ̂(x̂); the field is kept where it is. R-product is Lorentz
invariant. The VEV of R-product is translationally invariant;
consequentsly, R(x̂ , ..x̂n) depends on difference of coordinates:
ξ̂1 = x̂ − x̂1, ξ̂2 = x̂1 − x̂2....
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• R4,1 → R3,1 ⊗ S1

Decompose the 5-dimensional spacetime coordinates as:
x̂ µ̂ = (xµ, y), µ = 0, 1, 2, 3, y ∈ S1. Periodicity of y : y + 2πR = y ,
R is radius of compactification. Consider, φ̂(x̂)in which satisfies free
field equation: [�5 + m2

0]φ̂in,out(x̂) = 0. We expand the field

φ̂in,out(x̂) = φ̂in,out(x , y) = φin,out0 (x) +
+n=∞∑
n=−∞

φin,outn (x)e
iny
R

φin,out0 (x) has no y -dependence, it is called zero mode. For n 6= 0

[�− ∂

∂y 2
+ m2

n]φin,outn (x , y) = 0

where φin,outn (x , y) = φin,outn e
iny
R and n = 0 term is

φin,out0 (x) = φin,out(x) from now on. Here m2
n = m2

o + n2

R2 .
Momentum associated along y -direction is quantized: qn = n

R ; it is
additive conserved quantum number.
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• Let us look at Källen-Lehmann spectral reprsentation for the
5-dimensional theory

< 0|[φ̂(x̂), φ̂(ŷ)]|0 >=
∑
α̂

(
< 0|φ̂(0)α̂ > e−i p̂α̂.(x̂−ŷ)

× < α̂|φ̂(0)|0 > −(x̂↔ŷ)

)
If we expand φ̂(x̂) in fourier modes as we have done for φ̂(x , y)in

earlier then we arrive at

< 0|[φ̂(x , y), φ̂(x ′, y ′)]|0 >= < 0|[φ0(x) +
+∞∑
−∞

φn(x , y), φ0(x ′) +

+∞∑
−∞

φl(x ′, y ′)]|0 >

The VEV of a commutator of two φ̂ fields in the (KL) representation
decompose as sums of several VEV’s. Vacuum has qn = 0 thus terms
like < 0|[φn, φ−n]|0 > are admissible

< 0|[φ0(x), φ0(x ′)]|0 >, < 0|[φn(x), φ−n(x ′)]|0 >, ... 17 / 35



• The interacting field satisfies equations of motion with a source
current, ĵ(x̂) and it can be expanded as

ĵ(x , y) = j(x) +
n=+∞∑
n=−∞

Jn(x)e iny/R

φ(x) and φn(x) interpolate to corresponding in and out fields. φin,out

and each of the fields φin,outn (x) create their Fock spaces. For example
the single particle (say ’in’) states are:

a†,ink)|0 >= |k, k0, in >, k0 > 0; A†,in(p, qn|0 >= |p, p0; qn, in >, p0 > 0

Each sector contains a complete set of states is designated with a
conserved charge qn = n

R . Thus < p′, q′n|p, qn >= δ3(p′ − p)δn′, n.

Thus Ĥ decomposes as

Ĥ =
∑
⊕Hn

18 / 35



• Definitions and conventions

• Field and four momenta associated with n = 0 charge are respectively
denoted as φ(x) and k. Fields carrying nonzero charges and four
momenta are: χ(x) and p. The elastic scattering between particles
(with charge conservation) are of following types:
(i) φ+ φ′ → φ+ φ′

(ii) φ+ χ(n)→ φ′ + χ′(n)
(iii)χ(m) + χ(n)→ χ′(m) + χ′(n). We shall consider scattering of
particles with equal charge reaction (iii) without any loss of
generality; with this choice (i) and (iii) describe equal mass scattering
whereas (ii) is unequal mass scattering.

• The Mandelstam variables are:

s = (p̃a + p̃b)2, t = (p̃a − p̃d)2, u = (p̃a − p̃c)2

M2
a, M2

b, M2
c , M2

d , are two or more particle states carrying same
quantum number as a, b, c , d .
(Mab,Mcd), (Mac ,Mbd), (Mad ,Mbc) two or more particle states
having quantum numbers of (ab, cd), (ac, bd), (ad , bc) respectively.
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s = (p̃a + p̃b)2, t = (p̃a − p̃d)2, u = (p̃a − p̃c)2

M2
a, M2

b, M2
c , M2

d , are two or more particle states carrying same
quantum number as a, b, c , d .
(Mab,Mcd), (Mac ,Mbd), (Mad ,Mbc) two or more particle states
having quantum numbers of (ab, cd), (ac, bd), (ad , bc) respectively.
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• Scattering of n=0 States: This is the well known case of scattering
of scalar fields (with some difference)

• Utilize LSZ reduction technique

< kd , kc out|kb, ka in >= 4k0
ak0

bδ
3(kd − kb)δ3(ka − kc)

− i

(2π)3

∫
d4x

∫
d4x ′e−i(ka.x−kc .x

′)

KxKx ′ < kd out|R(x ′; x)|kb in >

with R(x ′; x) = −θ(x0 − x ′0)[φa(x), φc(x ′)]. Although it is identical
particle scattering, we continue to label particles. Here a and c are
reduced. The KG operators act on R(x ′; x) in following ways: when
they act on the fields φ(x) and φ(x ′) in the commutator unaffecting
θ(x0 − x ′0) we get −θ(x0 − x ′0)[ja(x), jb(x ′)]. Then there are terms like
δ(x0 − x ′0) + terms with finite number of derivatives (Symanzik). A δ
function with commutators....The derivatives of delta function, when
Fourier transformed, give products momenta. But amplitude is
Lorentz invariant; thus these could be polynomials in s, t, u. Some of
the terms vanish from ETC/locality arguments.
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• Polynomials in s, t, u do not affect analyticity properties; if they are
present we can use subtractions. We use
KxKx ′ < kd out|R(x ′; x)|kb in >=< kd out|Rjc(x ′)ja(x))|kb in >
keeping this fact in mind.

• SKIP
The trick: Consider the matrix element
M(x , x ′) =< α|[A(x),B(x ′)]|β > where α and β are states with
momenta Pα and Pβ respectively.
Use translation operation and shift by ’a’. Then
M(x , x ′) = e−i(β−α).aM(x + a, x ′ + a).
Choose a = −(x + x ′)/2. Then M(x , x ′) takes the form

< α|[A(x),B(x ′)]|β >= < α|[A((x − x ′)/2),B((x ′ − x)/2)]|β >
e i(β−α).(x+x ′)/2

Usually, we write product of two operators in this way. After
integrations δ-functions appear. We shall encounter this often.
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• Define three (generalized) functions (Retarded, Advanced and Causal)

FR(q) =

∫ +∞

∞
d4ze iq.zθ(z0) < Qf |[ja(z/2), j(−z/2)]|Qi >

FA(q) = −
∫ +∞

∞
d4ze iq.zθ(−z0) < Qf |[ja(z/2), jc(−z/2)]|Qi >

and

FC (q) =

∫ +∞

−∞
d4ze iq.z < Qf |[ja(z/2), jb(−z/2)]|Qi >

Qi and Qf are states carry four momenta and they are held fixed; at
the moment treat them as parameter. Fourier transform of FC (q),
F̃C (z) = 0, outside the lightcone z2 < 0. Moreover,
FC (q) = FR(q)− FA(q)
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• We open up the commutator to get ja(x)jb(x ′)− jb(x ′)ja(x) then
introduce complete set of states

∑
n |Pnα̃n >< Pnα̃n| = 1 and∑

n′ |P̄n′ β̃n′ >< P̄n′ β̃n′ | = 1. between products of currents. {α̃n, β̃n′}
are states permitted by energy momentum conservation qn quantum
number conservations. They come from

∑
⊕H. Present case: we

should have n = 0 from sum of qn’s from each state. FC (q) is∫
d4ze iq.z

[∑
n

(∫
d4Pn < Qf |ja(

z

2)
|Pnα̃n >< Pnα̃n|jc(−z

2
)|Qi >

)
−
∑
n′

(∫
d4P̄n′ < Qf |jc(−z

2
)|P̄n′ β̃n′ >< P̄n′ β̃n′ |ja(

z

2
)|Qi >

)]
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• Then

FC (q) =
∑
n

(
< Qf |ja(0)|Pn =

(Qi + Qf )

2
− q, α̃n > ×

< α̃n,Pn =
(Qi + Qf )

2
− q|jc(0)|Qi >

)
−∑

n′

(
< Qf |jc(0)|P̄n′ =

(Qi + Qf )

2
+ q, β̃n′ > ×

< β̃n′ , P̄n′ =
(Qi + Qf )

2
+ q|ja(0)|Qi >

)
Pn = (Qi+Qf )

2 − q.... appear since we have used translation operation
and carried out an integration leading to an energy momentum
conserving δ-function.
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• Remark: This is starting point to prove analyticity of the amplitude
for fixed t through J-L-D representation, then existence of Lehmann
Ellipses and the Crossing Symmetry. Entire KK tower does not
contribute to this sum from energy momentum conservation
considerations (details later).
All these can be achieved for the present case. Therefore, elastic
scattering in the n = 0 sector satisfies analyticity. Khuri came to
the same conclusion.
We can repeat the same calculation for scattering of n = 0 particle
with n 6= 0 particle. We reduce fields φa and φc (these are n = 0
states. The repeat the above-mentioned prescription. Only difference
that it is unequal mass scattering. Thus the analyticity of the
amplitude can be proved. This case was not addressed by Khuri.
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• Elastic Scattering of n(pa) + n(pb)→ n(pc) + n(pd)

• We can proceed the same way as before. The fields are denoted by
χa, χb, χc , χd with respective momenta pa, pb, pc , pd . Following
standard prescription

< pd , pc out|pb, pa in >= < pd , pc in|pb, pa in >

− 1

(2π)3

∫
d4x

∫
d4x ′e−i(pa.x−pc .x

′)

< pd |θ(x ′0 − x0)[Jc(x ′), Ja(x)]|pb >

Ja(x) is source current for χa(x) and similarly for Jc(x ′). Invoke
unitarity,

F (s, t) = i

∫
d4xe i(pa+pc ). x

2 θ(x0) < pd |[Ja(x/2), Jc(−x ′/2)]|pb >

We evaluate the imaginary part of this amplitude, F (s, t, )
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•

Im F (s, t) =
1

2i
(F − F ∗)

=
1

2

∫
d4xe i(pa+pc ). x

2 < pd |[Ja(x/2), Jc(−x/2)]|pb >

We use the fact that F ∗ is invariant under interchange pb → pd and
also pd → pb; θ(x0) + θ(−x0) = 1. Open up the commutator of the
two currents; introduce a complete set of states

∑
N |N >< N| = 1.

implement translation operations in each of the (expanded) matrix
elements to express arguments of each current as Ja(0) and Jc(0)
finally integrate over d4x to get the δ-functions. Then

F (pd , pc ; pb, pa)− F ∗(pb, pa; pc , pd) = 2πi
∑
N

[
δ(pd + pc − pn)

F (pd , pc ; n)F ∗(pa, pb; n)

−δ(pa − pc − pn)

F (pd ,−pa; n)F ∗(pb,−pc ; n)

]
Generalized unitarity relation. Forward case: implies optical theorem.27 / 35



• Look at the first term: δ function implies pa + pb = pn = pc + pd .
This is s-channel process, p2

n =M2
n = s.

Look at second term: pb + (−pc) = pn = pd + (−pa):
p2
n =M2

n = (pb − pc)2. Go to a Lorentz frame pb = (mb, 0), then

M2
n = 2mb(mb − p0

c ), p0
c > 0

Note: ma = mc , p0
c =

√
m2

c + p2
c ; M2

n < 0. Mn is intermediate
physical state carrying n charge. Thus above condition cannot be
satisfied. The 2nd term does not contribute to s-channel process.
Instead look at cross channel process:

pb + (−pc)→ pd + (−pa); − p0
a > 0, and − p0

c > 0

pb and pc are incoming (hence the negative sign for pc) and pd and
pa are outgoing. However, the first term does not contribute. Here is
hint of crossing symmetry (it is not a proof - can be proved ?). We
are not interested to prove crossing symmetry here! The δ-functions
guarantee energy momentum conservation. Generalized Unitarity
implies there is a cut off for KK towers as intermediate states so long
as s is finite, s could be very large.
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• Forward Scattering Amplitude: The Analyticity Property

• In this case the process is pc = pa and pd = pb. We have forward
scattering of equal mass particles, m2

n = m2
0 + n2

R2 . Starting from

F (pb, pa; pb, pa) =

∫
d4xe ipa.x(�x + m2

n)2 < pb|Rχa(x)χa(0)|pb >

We arrive at

F (pb, pa; pb, pa) =

∫
d4xe ipa.x < pb|RJa(x)Ja(0)|pb >

We go to the rest frame of particle ’b’: pb = (mb, 0) and define
ω = pa.pb

mn
. In this frame (adopted by Symanzik )

F (pb, pa : pb, pa) = i

∫ ∞
0

∫
d3xe ip

0
ax

0−i
√

(p0
a)2−m2

nê.xf̃ (x, x0)

ê is the unit vector along pa. We can identify f̃ (x, x0); and from
microcausality, we conclude f̃ (x, x0) = 0, unless x0 > |x|.

29 / 35



• Forward Scattering Amplitude: The Analyticity Property

• In this case the process is pc = pa and pd = pb. We have forward
scattering of equal mass particles, m2

n = m2
0 + n2

R2 . Starting from

F (pb, pa; pb, pa) =

∫
d4xe ipa.x(�x + m2

n)2 < pb|Rχa(x)χa(0)|pb >

We arrive at

F (pb, pa; pb, pa) =

∫
d4xe ipa.x < pb|RJa(x)Ja(0)|pb >

We go to the rest frame of particle ’b’: pb = (mb, 0) and define
ω = pa.pb

mn
. In this frame (adopted by Symanzik )

F (pb, pa : pb, pa) = i

∫ ∞
0

∫
d3xe ip

0
ax

0−i
√

(p0
a)2−m2
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• After the angular integration

F (pb, pa; pb, pa) =

∫ ∞
0
F(ω, r)dr

with

F(ω, r) = 4πi
sin
√
ω2 −m2

nre iωr√
ω2 −m2

nr
×∫ ∞

r
dte iω(r−t) < pb|[Ja(x), Ja(0)]|pb >

Technicalities - SKIP: F(ω, r) is analytic function of ω for
Im ω ≥ 0 (upper half plane). (i) No branch point at ω = ±mn since
sin
√
ω2−m2

nr

r
√
ω2−m2

n

even in r
√

(ω2 −m2
n.

(ii) For, ω < mn problem in behavior of sin
√
ω2 −m2

nr ? The
presence of e iωr takes care. (iii) Assume, F is well behaved in s - no
subtractions. To write dispersion relation for F , we have to
interchange integration over r and ω. Write a dispersion relation for
F(ω, r) (assume it vanishes for large ω), then
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•

F(ω, r) =
1

π

∫ +∞

∞

Im F(ω′, r)

ω′ − ω − iε
dω′

Note that Im F has the property: Im F(r , ω) = −Im F(−ω, r). The
integral is

F(ω, r) =
1

π

∫ +∞

0
Im F(ω′, r)

[
1

ω′ − ω − iε
+

1

ω′ − ω + iε

]
dω′

Now Im F is expressed as

Im F (pb, pa; pb, pa) =
1

2

∫
d4xepa.x < pb|[Ja(x), Ja(0)]|pb > (1)

We can open up the commutator, insert complete set of states, use
translation operation and carry out the angular integration to get

Im F (pb, pa; pb, pa) =
1

2
(2π)4

∑
n

| < pb|Ja(0)|pb > |2
]

×[δ4(pb + pa − pn)− δ4(pb − pa + pn)

]
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• The expression for F(ω, r) is

Im F (pb, pa; pb, pa) =
1

2

∫
dr4πr 2 sin

√
ω2 −m2

nr√
ω2 −m2

nr
×∫ +∞

−∞
e iωt < pb|[Ja(x), Ja(0)]|pb > dt

While writing dispersion integral for F (pa, pb, pc , pd) the issue of
interchanging t and ω integral comes up. Symanzik has resolved this
in his (1957) paper on forward dispersion relation for πN scattering.
Here is a simple problem of scattering of equal mass bosons. Thus
the dispersion relation written above for forward scattering amplitude
holds F (ω). Moreover, Bogoliubov’s approach leads to same
conclusion.

• Thus the forward amplitude satisfies dispersion relation. We have
assumed good behavior for large ω. We discuss subtractions later.
Conclusion of this section: Analyticity is not violated. This is different
from the conclusion of Khuri who studied analyticity of amplitude
perturbatively in potential scattering.
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• Summary and Conclusions

• Our principal goal was to study analyticity property of scattering
amplitude in a field theory with compact spatial dimension.

• The conclusion of Khuri for potential scattering in R3 ⊗ S1 is that the
amplitude does not have good analyticity property (in the case of
n=1) for class of Yukawa-type potentials.

• If such was the case in a relativistic field theory with a compact
coordinate, it would be a matter of concern. We considered a
massive, neutral, scalar field in 5-dimensional spacetime. A coordinate
is compactified on S1. Thus the geometry is R3,1 ⊗ S1. We analyzed
the resulting theory in the LSZ formalism systematically.

• The elastic scatterings amplitudes for (i) (n = 0) + (n = 0) and (ii)
(n = 0) + (n 6= 0) satisfy analyticity properties. In fact all the known
results of analyticity in LSZ frame work can be derived (not proved
here).

• We systematically studies forward elastic scattering amplitude of
(n) + (n) for n 6= 0. We showed that the forward scattering amplitude
satisfies dispersion relations.
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• Assumptions and Further Progress

• We assumed that the KK charge is conserved. It is a discrete,additive
quantum number. Conservation does not originate from a gauge
symmetry it came from S1 compactification. Some people have
questioned this. We have also assumed that there are no bound
states. This criteria might be relaxed in the case of elastic four point
amplitude. If BPS states were present care is needed, however, no
BPS states arise here.
• We assumed no subtractions - in any case (at most) the amplitude

can have polynomial growth and that is fine; we can write
N-subtracted dispersion relation.
• How about fixed-t dispersion relation? To go beyond Khuri.

In order to prove fixed-t dispersion relation we have derived the
analog of the Jost-Lehmann-Dyson representation for the causal
commutator of source currents. Next we proved the existence of
Lehmann ellipse. Thus the scattering amplitude has an enlarged
domain of analyticity beyond |cosθ| = 1. Consequently, analog of the
Froissart bound is proved. The Jin-Martin bound is derived, N < 2.
Be careful about the presence of KK towers while deriving the results.
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• How about fixed-t dispersion relation? To go beyond Khuri.

In order to prove fixed-t dispersion relation we have derived the
analog of the Jost-Lehmann-Dyson representation for the causal
commutator of source currents. Next we proved the existence of
Lehmann ellipse. Thus the scattering amplitude has an enlarged
domain of analyticity beyond |cosθ| = 1. Consequently, analog of the
Froissart bound is proved. The Jin-Martin bound is derived, N < 2.
Be careful about the presence of KK towers while deriving the results.
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